Microglia: New Roles for the Synaptic Stripper
نویسندگان
چکیده
Any pathologic event in the brain leads to the activation of microglia, the immunocompetent cells of the central nervous system. In recent decades diverse molecular pathways have been identified by which microglial activation is controlled and by which the activated microglia affects neurons. In the normal brain microglia were considered "resting," but it has recently become evident that they constantly scan the brain environment and contact synapses. Activated microglia can remove damaged cells as well as dysfunctional synapses, a process termed "synaptic stripping." Here we summarize evidence that molecular pathways characterized in pathology are also utilized by microglia in the normal and developing brain to influence synaptic development and connectivity, and therefore should become targets of future research. Microglial dysfunction results in behavioral deficits, indicating that microglia are essential for proper brain function. This defines a new role for microglia beyond being a mere pathologic sensor.
منابع مشابه
P 155: The Roles of Microglia in Neurodegenerative Diseases
Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...
متن کاملResting microglial motility is independent of synaptic plasticity in mammalian brain.
Microglia are well known for their roles in brain injuries and infections. However, there is no function attributes to resting microglia thus far. Here we performed a combination of simultaneous electrophysiology and time-lapse confocal imaging in green fluorescent protein-labeled microglia in acute hippocampal slices. In contrast to CA1 neurons, microglia showed no spontaneous or evoked synapt...
متن کاملFunction and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits
Many diverse factors, ranging from stress to infections, can perturb brain homeostasis and alter the physiological activity of microglia, the immune cells of the central nervous system. Microglia play critical roles in the process of synaptic maturation and brain wiring during development. Any perturbation affecting microglial physiological function during critical developmental periods could r...
متن کاملDeciphering Resting Microglial Morphology and Process Motility from a Synaptic Prospect
Microglia, the resident immune cells of the central nervous system (CNS), were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes ...
متن کاملRoles of Glial Cells in Sculpting Inhibitory Synapses and Neural Circuits
Glial cells are essential for every aspect of normal neuronal development, synapse formation, and function in the central nervous system (CNS). Astrocytes secrete a variety of factors that regulate synaptic connectivity and circuit formation. Microglia also modulate synapse development through phagocytic activity. Most of the known actions of CNS glial cells are limited to roles at excitatory s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 77 شماره
صفحات -
تاریخ انتشار 2013